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Slater-type orbitals (STOs) are able to satisfy the cusp condition1 at the nu-
clei, and for large distances they behave as exact eigenstates of atomic and
molecular Hamiltonians do2. Therefore, it is generally accepted that the use
of STOs in molecular electronic structure calculations would be highly de-
sirable. On the other hand, the notorious problems with the evaluation of
multicenter molecular integrals which occur in the linear combination of
atomic orbitals (LCAO) ansatz so far have prevented a systematic applica-
tion of STOs. However, the search for manageable analytical expressions of
multicenter molecular integrals over STOs has been continued. Among
these multicenter integrals, two-center overlap integrals constitute the basic
building blocks of many more complicated multicenter molecular integrals
occurring in quantum mechanical calculation of the electronic structure of
molecules. So, two-center overlap integrals over STOs have already been in-
vestigated by numerous authors with different algorithms (see refs3–6 and
references therein).

As is well known, the use of the Fourier transform convolution theorem7

is one of the most important methods for the evaluation of the compli-
cated multicenter molecular integrals. There is an extensive literature on
the use of Fourier transform convolution theorem in the evaluation of
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multicenter molecular integrals8. A large part of the literature are on Fourier
transform of Bessel-type orbitals (BTOs)8h–8m. Although the Fourier trans-
form of BTOs have a simple form, inefficiency arises in the evaluation of
multicenter molecular integrals especially in the case of higher quantum
numbers, nearly equal orbital exponents and high or low internuclear dis-
tances8i. In recent years, Geller8a,8b, Silverstone8c,8d, Steinborn8h–8k and
some other workers8 have used the Fourier transform convolution theorem
in the evaluation of multicenter molecular integrals. Because of the form of
STOs, to the best of the author’s knowledge, there is no satisfactory compu-
tational method for the use of Fourier transform convolution theorem in
the evaluation of multicenter molecular integrals over STOs except for the
old works of Geller8a,8b and Silverstone8c,8d and recent works of Guseinov
et al.5d,8n and Öztekin et al.8o. It can be easily seen that the formulae pre-
sented in works of Geller and Silverstone are complex in structure and
therefore it is not easy to use them in molecular calculations. The algo-
rithm presented in works of Guseinov et al.5d,8n is limited to only two-
center overlap integrals over STOs with equal orbital exponents and it can
be easily seen that their method fails even for smaller quantum numbers as
well. More recently, Öztekin et al.8o have given some tables for two-center
overlap integrals over STOs but we have noticed that some inconsistencies
arise in case of very high quantum numbers. The purpose of this work is to
present an accurate algorithm for the evaluation of two-center overlap
integrals over STOs with arbitrary orbital exponents using the Fourier trans-
form convolution theorem.

Atomic units (a.u.) are used throughout this work.

CALCULATIONS

Definition and Fourier Transform of a STO

Two-center overlap integrals examined in the present work have the follow-
ing form:

S rnlm n l m nlm n l m,
*( , ) ( , ) ( , )′ ′ ′ ′ ′ ′′ = ′ −∫ζ ζ χ ζ χ ζ; dR r r R 3 . (1)

Here χnlm(ζ,r) are normalized complex or real STOs defined by

χ ζ ζ θ ϕζ
nlm
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in which Slm(θ,ϕ) is complex or real spherical harmonic9 and ζ is orbital ex-
ponent.

By the use of Fourier transform convolution theorem, Eq. (1) can be writ-
ten as

S U Unlm n l m nlm n l m,
*( , ) ( , ) ( , )′ ′ ′

−
′ ′ ′′ = ′∫ζ ζ ζ ζ; e diR k kkR 3 k , (3)

where χnlm(ζ,r) and Unlm(ζ,k) are a pair of mutual Fourier transforms given
by

χ ζ
π

ζnlm nlmU( , )
( )

( , )
/

r k kkr= −∫
1

2 3 2

3e di (4)

and

U nlm nlm( , )
( )

( , )
/

ζ
π

χ ζk r rkr= −∫
1

2 3 2

3e di . (5)

To evaluate Unlm(ζ,k), we need the Rayleigh expansion of a plane wave in
terms of spherical Bessel functions and spherical harmonics10:

e ii±

=−=
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= ± 








∑∑kr r k
4

0

π ( ) ( )L
L LM

M L

L

L
LMj kr S

r
S

k 
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where jL(kr) is the spherical Bessel function.
Substituting Eq. (6) into Eq. (5) and solving the radial integral, the fol-

lowing expression is obtained for the Fourier transform of a STO 8n:

U Q k S
knlm nl lm( , ) ( , )ζ ζk
k= 





(7)

with

Q k
l n l k
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In Eq. (8), x k= +ζ ζ/ 2 2 and C xn
α ( ) is the Gegenbauer polynomial defined

by
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a n F n s F n ss s( , ) ( ) ( )α αα= − + − −−1 1 . (11)

In Eq. (11), Fm(n) = n!/m!(n – m)! are usual binomial coefficients.

Two-Center Overlap Integrals Over STOs

With the help of formulas given in previous part, we obtain for two-center
overlap integrals over complex and real STOs the following relations:

For two-center overlap integrals over complex STOs

S Lnlm n l m
L l l

L l
,

( ) ( | | )/

|

( , ) ( )′ ′ ′
− − ′

= −

′ = − +ζ ζ π;R 2 1 2 12 2

′
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l

l l
LC lm l m

|

( , )

× ′′ ′ − ′Q R Snl n l
L

L m m, ,( , ; ) ( , )ζ ζ θ ϕ . (12)

For two-center overlap integrals over real STOs

S Lnlm n l m
L l l

M L

L

,
( ) ( | | )/( , ) ( )′ ′ ′

− − ′

=−

′ = − +ζ ζ π;R 2 1 2 12 2∑∑
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′ ′ ×
L l l

l l
L MC lm l m

| |

| | ( , )

× ′′ ′ ′A Q R Smm
M

nl n l
L

LM, ( , ; ) ( , )ζ ζ θ ϕ . (13)

In Eqs (12) and (13) the symbol ∑ (2) indicates that the summation is to be
performed in steps of two, and the summation limits of the L summation
are direct consequences of the selection rules satisfied by the Gaunt coeffi-
cients CL(lm,l′m′) (ref.11).
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The quantities CL|M|(lm,l′m′) and Amm
M

′ in Eq. (13) are defined by

CL|M|(lm,l′m′) =
C lm l m for M m m

C lm l m for M m m

L

L

( , )

( , )

′ ′ = − ′
′ − ′ = + ′





, (14)
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2
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/

, | | , | |η δ η δε εmm
m m

M m m mm
m m
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In Eq. (15), the symbol ε may have the value ±1 and is determined by the
product of the signs of m and m′. The symbols η mm

m m
′

± ′ may have the values
±1 and 0: if among the indices m, m′ and m ± m′ there occurs a value equal
to zero, then η mm

m m
′

± ′ is also zero; if all the indices differ from zero, η mm
m m

′
± ′ = ±1

and the sign is determined by the product of the sign of indices m, m′ and
m ± m′. Thus the coefficients Amm

M
′ differ from zero only with the values

|M| = |m – m′|, |m + m′| (ref.5a).
The auxiliary function Q Rnl n l

L
, ( , ; )′ ′ ′ζ ζ in Eqs (12) and (13) is defined by
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L
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Using Eqs (8) and (9) in Eq. (16), we get the following expression for the
auxiliary function Qnl n l
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and the function G RM N
L
,

, ( , ; )ε ζ ζ′ is defined by

G R k
k

k k
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As it can be seen from Eq. (17), the auxiliary function Q Rnl n l
L

, ( , ; )′ ′ ′ζ ζ ap-
pearing in Eqs (12) and (13) is through the function G RM N

L
,

, ( , ; )ε ζ ζ′ . Therefore,
the efficiency of overlap integrals depends on the accurate calculation of
function GM N

L
,

,ε .

Calculation of Function G RM N
L
,

, ( , ; )ε ζ ζ′

In this section, we will focus our attention on the efficient calculation of
functions G RM N

L
,

, ( , ; )ε ζ ζ′ . Therefore, we analyze the function G RM N
L
,

, ( , ; )ε ζ ζ′ in
three possible cases.

1. Equal Orbital Exponents Case

For equal orbital exponents (ζ = ζ′ ), we express the function G RM N
L
,

, ( , ; )ε ζ ζ′ by

G R g RM N
L

M N
L

,
,

,( , ; ) ( , )ε
εζ ζ ζ′ = + + 2 . (20)

2. Nearly Equal Orbital Exponents Case

For nearly equal orbital exponents (ζ ≈ ζ′ ), we use the following Taylor se-
ries expansion in Eq. (19)

( ( )( (′ = + ′− −

=

∞
− − −∑ζ + ) ζ − ζ ) ζ + )2 2 2 2k f N q kN

q
q

q

N q2 1

0

2 1 (21)

and the relation below is obtained for G RM N
L
,

, ( , ; )ε ζ ζ′ :

G R f N q g RM N
L

q
q

q
M N

L
,

,
,( , ; ) ( )( ( ,ε 2 2

εζ ζ ζ − ζ ) ζ′ = + ′
=

∞

+ +∑
0

2 ) . (22)

3. Different Orbital Exponents Case

For the calculation of G RM N
L
,

, ( , ; )ε ζ ζ′ , in which orbital exponents differ sub-
stantially, we use the following decomposition of denominator in Eq. (19)

( ( ( )(ζ + ) ζ + ) ζ − ζ )2 2 2 2k k f N M qM N
N

q N M

q

2 1 2 1 1− − − − − − −

=

′ = + − ′
0

2 1
∞

− −∑ ′ +(ζ + )2 k q

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

284 Özdogan:



+ + − ′ ′− − −
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∞
− −∑ f N M q kM

q N M
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2 1 , (23)

and the relation below is obtained for G RM N
L
,

, ( , ; )ε ζ ζ′ :
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L
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, ( , ; )ε ζ ζ′ = g RM N
L
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L
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in which
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In Eqs (21)–(25) the function fm(N) is given by5f:

fm(N) =
Γ

Γ Γ
( )

( ) ( )
N

m N m
+

+ − +
1

1 1
. (26)

As it can be seen from Eqs (20)–(25), the calculation of functions
G RM N

L
,

, ( , ; )ε ζ ζ′ is reduced to basic integral g RM N
L

, ( , )ζ defined by

g k
k

k
j kRM N

L
M

N L, ( )
( )

( )ζ
ζ

=
+

∞

∫ d
2 2

0

. (27)

For the calculation of basic integral g RM N
L

, ( , )ζ , two different alternative for-
mulas have been presented in Appendix, using two different formulations
involving infinite series and the hypergeometric function 2F1.

COMPUTATIONAL RESULTS AND DISCUSSION

In this study, a new method is developed for the evaluation of two-center
overlap integrals over complex and real STOs using the Fourier transform
convolution theorem. The expressions obtained here for two-center overlap
integrals are in terms of Gaunt coefficients, spherical harmonics and auxil-
iary function Q Rnl n l

L
, ( , ; )′ ′ ′ζ ζ .

On the basis of Eq. (13), we have constructed a computer program in
Turbo Pascal 7.0 programming language (on a Pentium 233 MHz computer)
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for the evaluation of two-center overlap integrals over real STOs. In the cal-
culations, the auxiliary function Qnl n l

L
, ′ ′ and binomial coefficients Fm(n) are

evaluated at compile time for reducing calculation times. The binomial co-
efficients Fm(n) are stored in a one-dimensional array induced by

f
n n

mm n, ( )= + + +1
2

1 . (28)

The efficiency of the formulas for two-center overlap integrals given in
this work depends critically on the rate of convergence of the efficient cal-
culation of function G RM N

L
,

, ( , ; )ε ζ ζ′ appearing in the calculation of auxiliary
function Q Rnl n l

L
, ( , ; )′ ′ ′ζ ζ . Therefore, the function G RM N

L
,

, ( , ; )ε ζ ζ′ is analyzed in
three possible cases. For the different orbital exponents case, the expression
for G RM N

L
,

, ( , ; )ε ζ ζ′ involves one infinite sum. For nearly equal orbital expo-
nents, the function G RM N

L
,

, ( , ; )ε ζ ζ′ converges as in the case of different orbital
exponents. On the other hand, for equal orbital exponents, the infinite
sum disappears and we express GM N

L
,

,ε with an analytical relation. The con-
vergence limit for GM N

L
,

,ε is determined for 18-decimal-digit accuracy, with
typically at most 20–40 terms in infinite sums in the whole calculations.

Some comparative values of two-center overlap integrals over STOs have
been listed in Table I for wide range of quantum numbers, orbital exponents
and internuclear distances. As it can be seen from Table I, the accuracy is in
all cases 13 significant figures at least with refs3–6, but some discrepancies
appear with the results in ref.8o for principal quantum numbers n, n′ ≥ 55.

In order to test the accuracy of the presented method, we have construc-
ted a computer program in Maple 6 symbolic programming language. Com-
puter results obtained from programs constructed in Maple 6 have been
added to Table I. Comparing these values with the data in literature it can
be seen that the presented method gives more accurate results than older
literature3–6,8o. We think that the discrepancies with results in ref.8o may re-
sult from the error in the starting point of the recurrence relations given in
ref.8o, which will increase with increasing quantum numbers. To strengthen
our claim, we also compare the computer results of this study with the for-
mula obtained by the ellipsoidal coordinate method5f, and at least five-
decimal-digit accuracy is obtained up to n, n′ ≤ 83. Therefore, we think that
the stability region of recurrence schemes in ref.8o should be well analyzed.

Another important of the presented algorithm is the speed. For testing
the speed of the presented algorithm, we compared our CPU times with the
available literature for same set of parameters. We found that our algorithm
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is substantially faster than algorithms in prior literature. For example, since
the calculation of the integral S766,766 requires 0.3 ms in our algorithm, this
time is higher in ref.8o and other available literature3–6.

It can also be seen from Table I that the algorithm presented in this work
is not affected by the canceling singularities arising for higher quantum
numbers, nearly equal or equal orbital exponents, and higher or lower
internuclear distances, as arise using BTOs in the evaluation of multicenter
molecular integrals8i. On the contrary, it must be noted that the conver-
gence of two-center overlap integrals with equal orbital exponents is more
accurate and somewhat faster than in nearly equal and different orbital ex-
ponents cases. Also, the presented algorithm permits to avoid the use of ro-
tation of overlap integrals as we encountered recently5f.

It should be noted that the possible numerical instabilities may encoun-
tered in our algorithm is related to the calculation of integral G RM N

L
,

, ( , ; )ε ζ ζ′
arising in the calculation of auxiliary function Q Rnl n l

L
, ( , ; )′ ′ ′ζ ζ . To achieve the

best results, one can give more accurate formulas for this integral.

CONCLUSIONS

Consequently, it may be concluded that the approach presented in this work
allows to attain high accuracy in the whole range of quantum numbers, or-
bital exponents, and internuclear distances. Also, we note that this algo-
rithm provides a rapid and sufficiently accurate method for the calculation
of multicenter molecular integrals arising in the Hartree–Fock–Roothaan ap-
proximation based on the translation formulas for STOs. Work is in prog-
ress for the evaluation of the multicenter molecular integrals over STOs based
on the computer results for two-center overlap integrals given in this work.

APPENDIX

In this section we confine ourselves to the accurate calculation of the basic
integral g RM N

L
, ( , )ζ . Two different alternative formulations are given in the

following.
1. The first approximation for the calculation of basic integral g RM N

L
, ( , )ζ is

based on the series expansion of spherical Bessel function jL(kR) (ref.9).
From this point of view, we obtain

g R R
f N u

N u f N uM N
L L

u
u

Nu
, ( , ) ( )

( ) ( )
( ) ( )

ζ =
− +

+ + + +=

2
1

2 1 2 2 1Γ0

2
2

∞

+ +∑ R gu
L M u N, ( )ζ , (29)
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where gM,N(ζ) is the integral of the form

g k
k

kM N

M

N, ( )
( )

ζ
ζ

=
+

∞

∫ d
2 2

0

. (30)

We express the function gM,N(ζ) for even and odd M, respectively, as in the
following:

g2M,N(ζ) =
π

ζ 2 2 1
1

2 3
2 2

2 2 3 2 1

2 2N M
N M

N
N M

f N M f M

f N M− −
−

−
− −

− − −
− −

( ) ( )

( )
(31)

and

g2M+1,N(ζ) =
1

2 1 12 2 2ζ N M
MN M f N− − − − −( ) ( )

. (32)

2. The alternative formulation for the calculation of integral g RM N
L

, ( , )ζ is
in terms of the hypergeometric function 2F1, which can be obtained using
formula in ref.9:

g R
x

N L
F r r N LM N

L

N M

L

r
, ( , )

( ) ( / )
( ; ,ζ π

ζ
=

+



 − −

− −2 1 2 13 2
1

Γ Γ
+ +3 2 2/ ; )x

+
+ + +

+ + − +




− −

−

x
N s N

F N N s N r x
N M

s N

2 1

2 1
2

4 1 2 1
1 1

Γ Γ( ) ( )
( ; , ; ) , (33)

where

x R r L M s L M= = + + = −ζ / , ( ) / , ( ) /2 1 2 2 . (34)

We define the function Γm(N) and hypergeometric function 2F1(a,b,c;x) as

Γ Γ
Γ Γm N

N
m N m

( )
( )

( ) ( )
=

−
(35)

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

290 Özdogan:



and

2 1
0

F a b c x
f a

f b f c
xh

h hh

h( , , ; )
( )

( ) ( )
=

=

∞

∑ . (36)

The function fm(N) is given in Eq. (26). The convergence limit for the
hypergeometric function 2F1(a,b,c;x) is determined for twenty-decimal-digit
accuracy in all calculations.

The author thanks Professor David Harrington for the provision of data that helped in the early
stages of debugging our procedures and running lengthy comparisons of our final results.
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